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We have performed extensive numerical simulations of diffusion-lim{{gdCA) and reaction-limited
(RLCA) colloid aggregation to obtain the dependence on concentration of several structural and dynamical
guantities, among them the fractal dimension of the clusters before gelation, the average cluster sizes, and the
scaling of the cluster size distribution function. A range in volume frac#@panning two and a half decades
was used for this study. For DLCA, a square root type of increase of the fractal dimension with concentration
from its zero-concentration value was founig=d ¢+ a¢?, with d¥=1.80+ 0.01,a=0.91+0.03, and3=0.51
+0.02. For RLCA the same type of behavior was found, this time w&h 2.10+0.01,a=0.47+0.03, and
B=0.66-0.08. In the case of DLCA, the exponenthat defines the power law increase of the weight-average
cluster size §,) with time also increases as a square root type with concentratier®+b¢®, with
2°=1.07+0.06,b=3.09+0.22, ande=0.55+0.03, while the exponent’ that describes the power law in-
crease of the number-average cluster sigg) (with time follows the same lawz’ =z'%+ b’¢>“', now with
2'9=1.05+0.04,b’ =3.41+0.24, ande’ =0.46+=0.02. We have also found that the cluster size distribution
function scales adlg(t)~NySy2f(s/S,), whereN, is the number of initial colloidal particles arfdis a
concentration-dependent function displaying an asymmetric bell shape in the limit of zero concentration. For
RLCA, we found an exponential increase of the average cluster sizes for a substantial range of the aggregation
time: S,,~eP?' andS,~e%%', with p~2q. For longer times the behavior departs from the exponential increase
and, in the case d§,, for low concentration, it crosses over to a power law increase. In the RLCA case the
scaling is as in DLCA where now a power law decay of the functidefines the exponent f(x)~x""g(x),
with g(x) decaying exponentially fast for>1. A slight dependence of the exponendn concentration was
computed around to the value=1.5.[S1063-651X%96)10311-]

PACS numbsg(s): 64.60.Qb, 02.76-c, 05.40+j, 81.10.Dn

I. INTRODUCTION are as follows(i) There is a power law growth of the aver-
age cluster size§S, andS,,) defined by the exponeat S,,,

Significant advances in the understanding of irreversibleS,~t*. It was experimentally found that z was approxi-
kinetic colloid aggregation have been made in the past demately oneJii) The cluster size distribution function shows
cade[1,2]. For a wide range of experimental systems thethe scaling behavioN(t)~NyS(t) ~2f[s/S(t)], where S(t)
bonds formed between the colliding particles are very strongs equal to the number-average or weight-average cluster size
inhibiting the rearrangement of the particles within the clus-and f is a universal function, bell shaped when plotted as
ters. This mechanism produces opened clusters that exhilfitnction of s on a log-log scale. On the other hand, in the
fractal structurd3]. That is, the exponerd; that relates the limit of RLCA researchers found) an exponential increase
total massM of the aggregate to its typical size is not an of the mean cluster sizes with time such tiSg(t) ~ S2(t)
integer:M ~R%. This peculiar discovery of the scale invari- and (i) a scaling similar to that for DLCA in whicl$(t) is
ance of the clustergt—8] promoted great interest and work the weight-average cluster size. The functian this case is
in the study of these systems. a universal function with power law decdyx)~x""g(x),

Two limiting regimes of the aggregation processes werevhereg(x) decays exponentially fast for>1 and r=1.5.
subsequently identified9—12. There is a rapid regime All these facts have been confirmed extensively, both experi-
which is diffusion limited[diffusion-limited colloid aggrega- mentally [10-12,15,16,18—36and with computer simula-
tion (DLCA)], characterized byl;~1.8, for which the col- tions [2,5,6,27—-3Q It is important to emphasize that the
liding particles stick at first contact. If the aggregation isabove results, mainly the experimental ones, have been ob-
much slower, due to a very small sticking probability, thetained for a low volume fraction regime and researchers
system reaches a different and opposed regime which is rsometimes extrapolate them thinking that they apply to high
action limited[reaction-limited colloid aggregatiofRLCA)]  concentrations as well. Thinking it over, one cannot escape
leading to more compact clusterd;2.1). This result can the conclusion of a concentration dependence of the previ-
be rationalized by noting that the colliding clusters interpen-ously described quantities. Take, for example, the fractal di-
etrate more if the sticking probability is close to zero. In mension. In a very concentrated regime the small clusters are
addition, researchers found that aggregating systems possesgeady interpenetrated before sticking and when they stick,
not only spatial scaling but also dynamic scaling behavioithey do so not at the tips of their longer arms but also in the
[13-17. For DLCA, the two already known dynamic results middle. Therefore the compactness of the clusters should in-
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crease with concentration and hence the fractal dimensiotracted from the reaction bath where the aggregation is tak-
should increase. Concentration changes become important ing place beforegelation occurs. Experimentally such a situ-
the laboratory and in industrial applications. ation can be achieved by diluting repeatedly the bath where
Two attempts to calculate this dependence in the DLCAthe reaction takes pla¢&2,26. Our computational approach
limit have been reported recently for a two-dimensional sysis related to that of Ref32] and superior to that of Ref31]
tem of hard diskd31] and for a two-dimensional square for the calculation of dynamical quantities because the cor-
lattice [32]. van Garderert al. [31] compute numerically a rect diffusivity is given to clusters of different masses at
short range fractal dimension of two-dimensional blobs com-changing concentration. This work is a calculation in three
posing a single final aggregate. This fractal dimension is obdimensions of the concentration dependencédath struc-
tained from the decay of the scattering functig(g), foraq  tural and dynamic quantities in the DLCA and RLCA limits.
range corresponding to distances of four disk diameters up t&/e emphasize that the fractal dimension calculated in this
a concentration-dependent coherence leggitheir reported  work refers to that ofndividual clusters in the flocculation
value ofd;~1.45 is independent of concentration. However,regime, i.e., before gelation. It may not necessarily coincide
the same authors also report a long range fractal dimensiagith that of Ref.[35] associated to the blobs embedded in an
that changes smoothly between 1.45 and 2, for the remainingfinite gel.
range beyond the coherence length and up to the size of the The organization of this article is as follows. Section II
aggregate. In this case they obtain a concentration-dependefiéscribes the algorithm used to perform the simulations and
fractal dimension that tends to 2 for high concentrationsihe methodology used to obtain the structural and dynamical
when there are manterminal blobs[33,34 in the reaction  gyantities. Sections Ill-V present the concentration depen-
box. This is indeed to be expected because the system loognce of these properties in both limits, DLCA and RLCA.
homogeneous at long lengths. To obtain a long range fract@ection 11l describes the calculation of the fractal dimension
dimension smaller than 2 for intermediate concentrations i%f the growing clusters before gelation. Section IV pertains
an artifact. As calculated, this fractal dimension is just ato the exponentg andz’ that characterize the power law
crossover value that would tend to 2 if the authors had usefime behavior ofS, andS,. This section addresses also the
a much larger computational box, capable of containingexponential growth observed during the early stages of the
many more terminal blobg33,34. Pencea and Dumitrascu aggregation time. Section V describes the scaling that results
[32] obtained a concentration-dependent fractal dimensiofom the dynamical behavior of the growing clusters. Section

for the aggregating clusters before gelation that changed itg| summarizes the results with final remarks about their va-
value from 1.5 to 1.9, for concentrations between 0.1 angigity.

0.5. However, no discussion on the statistics of their calcu-
lations was published, making it difficult to assess the sig-
nificance of their results.

The calculations of van Garderest al. and Pencea and
Pumitrascu are different because different fractal dimensions In this work we use a cubic lattice model where the lattice
were calculated. In addition, the diffusivity of the growing cells may be occupied by colloidal particles. Although con-
clusters is correctly addressed only in the calculation of Perntinuum models can be develop¢86], the algorithm used
cea and Dumitrascu. In this regard one should note that bkiere has the convenience of its execution speed, particularly
moving all the clusters simultaneously the same step lengtlvhen using a large number of particles. Initially all the col-
as in Ref[31], the same diffusivity is assigned to a monomerloidal particles are randomly distributed and unaggregated
as to a very big cluster. Although this mistake may not affectalthough some of them may touch each other at some points.
structural quantities such as the fractal dimension, it wouldAt a given intermediate time we have a collection of clusters
certainly make a difference in the evaluation of dynamicmade of nearest-neighbor occupied lattice cells that are dif-
guantities such as the cluster size distribution function. fusing randomly. One of these clusters is picked at random

The only published work in three dimensions known toand moved by one lattice unit in a random direction if a
the authors, addressing a concentration dependence of fractandom numberX uniformly distributed in the range
dimensionalities, is that of Hasmy and Jullig8b]. In this 0<X<1 satisfies the conditionX<<D(s)/D,.x, Where
work, as in Ref[31], the short range fractal dimension of D(s)~s Y is the diffusion coefficient for the selected
small blobs in a gelling network is calculated from the decaycluster of sizes andD ,,, is the maximum diffusion coeffi-
of the pair correlation functiorg(r,t)~r9 2, for 3<r<¢.  cient for any cluster in the system. Otherwise the cluster is
These authors find an increase of this short range fractalot moved. In the previous expressidn is the fractal di-
dimension with concentration. This is in opposition to themension of the clusters. Once a cluster is selected the time is
two-dimensional work of van Garderest al. [31]. increased by 1N.D a0, WhereN, is the number of clusters

In this work we present results from extensive numericalin the system at that time independently of whether the clus-
simulations for the concentration dependence of severder is actually moved or not. An encounter is defined by an
structural and dynamical quantities obtained for three-attempt of one moving cluster to overlap the lattice cells
dimensional aggregation processes in the flocculation resccupied by another. In this case the move is not allowed
gime. The algorithms used have already been applied witand the moving cluster either stickand is mergedto the
success to demonstrate dynamic scaling in computer simulather with probabilityP, or remains side by side to the other
tions of these systeni29,30, as well as to predict the scal- with probability 1— P,. The values used fd?, were one for
ing of the structure factdi33,34. These algorithms allow us the DLCA case and 0.0005 for RLCA. This last value is
to obtain the fractal characteristics of individual clusters ex-small enough to successfully show dynamic scaling in

Il. THE MODEL AND THE METHOD
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RLCA [30]. The simulation is terminated just before the ge-

lation point. 2.6

During the simulations we recorded for selected physical
times the following dynamical quantitie§l) the total num- 2.4
ber of clusters, from which we were able to obtain the
number-average cluster siz€) the weight-average cluster 29
size; (3) the cluster size distribution; an@) the radius of
gyration versus the number of monomers for evaly of 2
the) clusters formed during the simulation.

Various strategies were employed to deal with the con- 18
centration dependence of the fractal dimension to account for q )
the diffusivity of the cluster®(s)~s~ M. A set of 20 cal- f
culations of the fractal dimension for every concentration 2.6

studied was performed, using the accepted vdluel.8 for
DLCA (2.1 for RLCA) to measure the cluster diffusivity.
The best analytical fit to a calculated concentration- 24r 2dl
dependent fractal dimension was obtained. From this fit we
extractedfirst ordervalues of the fractal dimensiah(¢) at

each concentration and input them to account for the changes
in cluster diffusivity. A set of 40 simulation&ip to 100 for
large concentrationswas performed—called the output ol b
simulations—and these are the results reported in this paper. T S S S S—

In addition, for some concentrations we performed a self- 0 0102030405
consistent calculation of the fractal dimension. An initigl (0]
was used to calculate(s). At the end of the first simulation
a newd; was calculated, which was then input as an initial FIG. 1. The fractal dimension as a function of volume fraction.
value to calculatd(s) in a second simulation. The process (a) DLCA case: for each of the concentrations studied, averages are
was repeated up to 40 iterations per concentration. Thigver 40 simulations fory<0.1 and over 80 simulations f@>0.1.
method does not converge to a valuedaf more accurate (b) RLCA case: averages are over 20 simulations ¢e%0.1 and
than what we report in this paper. In all cases the selfover 40 simulations forp>0.1. Solid lines correspond to the fit
consistent values were within the standard deviation of thel;=d?+ag¢?. Error bars represent twice the standard deviation.
sample of simulations reported in this paper.

The following 14 volume fractions were considered in gptained from the log-log plots of the radius of gyration
DLCA: 0.001, 0.003, 0.0055, 0.01, 0.03, 0.072, 0.1, 0.139yersys size of all the clusters formed during the whole ag-
0.2,0.24, 0.3, 0.4, 0.469, and 0.5. In the RLCA case a towjgregation time. Very small clusters were neglected in this
gf 11359w0er1e7 gsgdz' %02(213'0030%55’ g 4(1)619 0523 ' 0050?}] (I)DEEZA %r nalysis such as to cover only the asymptotic regime of large
each concentration up to 0.01 a total of 40 output simuIation%;LI'“'Sters(greater than 50 monomersSubsequently, we aver

were performed whereas for each concentration above 0.01 aged the 40100 upon the cagevalues of the fractal dimen-
total of 100 output simulations were carried out. In the STON for each concentration and plotted these averages versus

RLCA case for each concentration up to 0.01 a total of 2(}he concentratiofvolume fraction ¢. In Fig. 1(a) the points

output simulations were performed and for the other concenS/Teéspond to the 14 averages and the vertical bars show

trations a total of 40 output simulations per concentratiofVice the standard deviatici96% confidence .
were carried out except fap=0.469 and 0.5 where 80 and Nothlng_prevents our algorithm from being used for high
100 output simulations were performed, respectively. Eadlcfoncen(;rau?nls neba;s:l.hHoweveT, we Cuoosﬁ to_work be-
simulation in both DLCA and RLCA contains on the order I0W and a little above the percolation threshald=0.312

of 30 000 initial monomers. This number of particles is largel37] for our simple cubic lattice model to ensure that the

enough to allow for a meaningful statistical analysis. initial clusters of cubic monomers are separated. Therefore

We should note that these calculations are extremely corrur results are valid for small and intermediate concentra-
puter intensive. DLCA calculations are 450 times faster tharfions ‘ﬁsfo'r?,' nghfr concentrations @f—1 are outside the
RLCA. For example, one simulation at a concentration ofSCOP€ Of this work.

$,=0.17 requires a CPU timep, =12 sec for DLCA and With_in Fhe valid range of concentrgtions, the best func-

90 min for RLCA | dedi fa MIPS R4400 200 MH tional fit yielded a square root type of increase of the fractal
min tor In a dedicated : Z dimension from its zero concentration value. Namely,

IP22 processor. The computation time for another S|mulat|oraf:d?+a¢ﬁ whered%=1.797+0.011, a=0.913+ 0.025

221

at a different concentratios scales up tdCPUad’a/ ¢. Al B=0.507+0.022. Errors correspond to twice the standard
together, the results reported in this paper constitute an agteviation of the nonlinear fit. It is important to emphasize
complished challenging computer effort. that 1.797, the intersect &t=0, is the accepted value of the

DLCA fractal dimensiord;~1.8 in the dilute limit.
Ill. THE FRACTAL DIMENSION

A. DLCA B. RLCA

For each of the 40100 upon the cag@utput simulations A procedure similar to that in DLCA was followed to
of each concentration the value of the fractal dimension wasgbtain the fractal dimension in RLCA. Only concentrations
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below or close to the percolation threshold were considered
and small clusters were neglected when calculating the frac-
tal dimension. Figure (b) shows the fractal dimension as a
function of concentration where each of the 15 points corre-
sponds to the average over the output simulations. As in the
DLCA case we find that, within the valid range of concen-
trations, the best functional fit yields a square root type of
increase of the fractal dimensiord;=d%+a¢”, where
d9=2.098+0.010, a=0.469*+0.025, andB=0.661+0.080.
Once again, the value af? is very close to the RLCA ac-
cepted fractal dimension in the dilute lim#=2.1). .
Although the same square root behavior as in the DLCA : : . : * :
case was observed for RLCA, the error on the best estimated © 005 01 015 02025
parameters is larger. This is expected because during the b Zo = 2.81
RLCA aggregation the morphology of the growing clusters b =86.76
is richer than in DLCA. 3.2r =152

IV. TIME BEHAVIOR OF THE AVERAGE CLUSTER SIZE 3.1r

A. DLCA and the exponentsz and Z'
The time behavior of both the average cluster Szend
of the weighted averag8, is seen to be exponential at the
early stages of the growth process. In DLCA in less than 2.9
one-thousandth of the total aggregation time the system

RLCA
crossed over to a power law growth defined by the exponent 2.8 : : ;
z for S, andz’ for S;;: o 0.01 0.02 0.03

)
Su(h)~t%, Sy (H~t7. (1)

FIG. 2. The exponents andz’ vs volume actiong for concen-
trations where it is possible to define a region of linear behavior in
the log-log plots ofS,, andS,, vs time.(a) DLCA case: averages are

ithi hich th . " behavior in the loa-| ot fover 40 simulations(b) RLCA case: averages are over 20 simula-
within whic Ere IS a inear benavior in the 10g-10g potS O ;¢ the solid and dotted lines depict the functional fit

Sy and S, versus time. Within this time interval we fit a |~ a 0 vy _
straight line to obtain the above defined exponents. The timé * Tbe andz'=z"+b’¢", respectively.
region in which the fit is performed is bounded from below
by the crossover from the exponential behavior and fronfound that the exponential behavior is clearly observed for a
above by noise due to finite size effects. As the concentratiomuch longer fraction of the whole aggregation time and that
increases, this time region decreases and eventually disafiie region of validity of the power law is noticeable only at
pears, marking a concentration threshold above which it i$ow concentrations and at times three decades longer than in
not possible to find these exponents, at least for our finited CA. For the average cluster si&g, it was not possible to
lattice simulations. obtain the exponertt’ even at low concentrations, due to the

In Fig. 2a) we show the averages of the exponentnd  apsence of a straight line regime in the log-log plots.
z' over the output simulations plotted as a function of con-  Figyre 2b) shows the averages over 20 output simula-
centration. For concentrations larger thar0.24 forS,, and  tjons of thez exponent as a function of concentration only
larger thang=0.072 for S, it was not possible to find a 4 those concentrations where we could obtaiit0.003,
straight line regime in the log-log plots. Figuréapreflects o gos5, 0,01, and 0.03The best functional fitcontinuous
this fact . L curve givesz=zy+h¢“, wherez,=2.811+0.001,b=86.76

The best functional fit gives a square root type of depen-+0 42, anda=1.516. Although there are just four points
dence of these exponents with concentration. We fitted thgnd wé cannot b.e coﬁclusive the concentration dependence
exponentz to the functionz=z+b¢* and the exponers’ ’ P

to the function z'=2'"+b’¢*, obtaining 2°=1.067 of the exponent at low concentrations in RLCA seems to be

+0.056 b=3.0880216. a=0547+0.034 z°=1045 Very differentthan in DLCA, showing a steeper increase.
4£0.039. b’ =3.413 0.245 ande’ —=0.465+0.020. It is im- The exponential increase of the mean cluster sizes for a
portant to note that the calculated values #rand z'® are respectable portion of the total aggregation time was particu-

quite close to unity, which is the accepted value in the dilutd@y noticeable for the high concentration simulations. In
limit. Fig. 3 the InS,, is plotted as a function of time for the output

simulations at three concentrationga) $=0.003, (b)

$»=0.072, and(c) ¢=0.3. The time range shown in the fig-

ures covers the total aggregation time before the gelation
As already mentioned, the plots 8, versus time present point. Results forS, are quite similar to those fdg,, illus-

a crossover from an exponential increase to a power lawrated in Fig. 3. From graphs of I, and InS,, as a function

behavior at a sufficiently long time. However, in RLCA we of time we calculated the constant that multiplies the time in

The methodology to obtain the exponentandz’ is sum-
marized elsewherg¢30,36. We located the time interval

B. RLCA and the exponential growth
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1o ®=0.003 a s .l
ol gttt 0.0003} p=0.00102
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2r °-°a
1 / FIG. 4. RLCA case. Concentration dependence of the slopes
ot . andm'’ of the straight lines in the plots of B, and InS, vs time.
o 0.4 0.8 1.2
8Mo=03 C the exponentg andz’. At low concentrationg=2z'=1 and
5f § i S, is proportional toS,,. However, at finite concentrations
ar- g ! z#2z' and the cluster size averages are not proportional.
af o Hence, if scaling works with one of them, it cannot work
N o® with the other.
It is important to mention that the shape of the scaling
1r = . . . .
//’ function is concentration dependent. For low concentrations
°3 0.05 0.1 015 the shape is asymmetrically bell shaped as in Rdf2,26.
time (1 05) However, with increasing concentration the left branch of the

curve tends to rise, becomes flat ##0.03, and has a nega-

FIG. 3. RLCA case. The B,(t) vs time behavior during the tive slope for higher concentrations. Figures 5 shows the
whole aggregation process before gelation for 20 simulations afaster curves for three concentratioria) ¢=0.001, (b)
each concentratior(a) ¢=0.003,(b) $=0.072, and over 40 simu- ¢=0.03, and(c) ¢=0.139, where data from all the output
lations for(c) ¢=0.3. Time is in reduced units. simulations were considered.

the exponential growtkthe slopem for S,, andm’ for S, of
the straight linesand plot them versus concentration. Figure ) o )
4 shows the concentration dependencencdndm’. These To scale the data for the cluster size distribution function,
plots reveal a clear linear dependence, ire=p¢ and W€ cofroborated [12,26,39 that the form Ng(t)

m’ =qd. The values obtained farandg werep=0.001 019 = NoSw (1)(s/S,(t)) that we found valid for the DLCA
+0.000 024 andq=0.000 5080.000 008. The fact that Case is also valid here. However, the functifbfx) is no
p~2q indicates thaB,~S?2 at least for a good initial part of longer bell shaped and has a power law decay defined by the

the aggregation time. In conclusion, these results can be coffXPonentz: f(x)~x7g(x). Hereg(x) is a cutoff function
cisely written as follows: decaying exponentially fast for>1. As in the DLCA case

to fully collapse the data we needed to exponent&fd¢o a
S,~eP?, 2 power of approximately-2. A slight dependence of the ex-
ponentr on concentration was found ranging from 1.37 for
low concentrations up to 1.62 for very high concentrations.
This can be a real effect or can be an artifact of the compu-
tational algorithm which takes into account most of the
mechanisms experienced by the real aggregating particles
but not all of them. That the dependence on concentration is
We tested several scaling equations for the cluster sizeery slight together with the available experimental data and
distribution function. Our first attempt was the scaling pro-theoretical result$which propound a constantvalue of 1.5
posed in Ref[38]: Ny(t)~Nys 2f(s/S,). Using this for- [11,12,15,21,23,26,3p may indicate the second possibility
mula it was not possible to collapse the data for differentto be more likely. A possible explanation may be the fact
times during the aggregation into one single master curvehat, in the simulation, data for large clusters are scéefe
The second attempt was the formula given in REE2,26: of the master curvegdue to the finite size of the computa-
N(t)~NyS;, 2f(s/S,). In this case we were able to collapse tional cell whereas the experimental data refer to infinite
the data only for the simulations at low concentration. Fi-[12,26] material. Figures @& and @b) illustrate
nally we tried the formNg(t) ~NgS,,*f(s/S,), for whichwe  In[S21(t)N4(t)/No] versus Ing/S,(t)] for ¢$=0.003 and
were able to fully collapse the data for all concentrations0.072, respectively. In Fig.(6), for ¢=0.3, it was necessary
The exponent of5, that best correlated the data was aboutto exponentiate5,, to the power 2.2 to obtain the best col-
—2. lapse of the data. As in DLCA, figures display data for the
The fact that the formula in Ref§12,26 gave scaling at numbers of clusters coming from all the output simulations
low concentrations is apparently related to the behavior ofor each concentration.

B. RLCA

Sy~ed?,

with p~2q.

V. THE SCALING
A. DLCA
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¢ = 0.003

T=1.37+0.03
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2.1
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0@/ alb 4k T=1.51+0.04
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-8
8r °e
5 e
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N,
al @ 4t T=1.61+0.03
C
= s , . . )
% = ¢ ) 6 4 =2 o0 2
In (s/S,,) In (s/Sw)
2.1
FIG. 5. DLCA case of In{Sf\,l(t)Ns(t)/No] VS |n[S/SW(t)] for FIG. 6. RLCA case of In$w (t)NS(t)/No] VS |n[S/SW(t)] The

(8 $=0.001,(b) ¢=0.03, and(c) $=0.139. The cluster numbers cluster number functioiNg(t) contains data from 20 simulations at

functionN(t) contains data from 40 simulations 4=0.001, 0.03,  €ach concentratiofe) $=0.003,(b) ¢=0.072, and from 40 simu-
and from 80 simulations a#=0.139.S,(t) is the average over lations at(c_) $=0.3. S,(t) is the average over those simulations.
those simulations. Sizes are in reduced units. For ¢=0.3 it was necessary to exponenti&gto the power 2.2 to

obtain the best possible collapse. Sizes are in reduced units.
VI. SUMMARY AND CONCLUSIONS

We have seen a real effect in the concentration depen-l-h's would fully validate the results in this work and only

dence of the structural and dynamical quantities in colloidminor changes In the constants that multiply the volume frac-

aggregation manifested by an increase of these quantitié?ns in the above formulas would need to be introduced in

when increasing the concentration. In particular, the fractaP"der to compare with experiments. ,
dimension of the clusters increases at higher concentrations, e finally need to mention that the increase in the fractal
As shown in this work, in DLCA the fractal dimension at dimension with increasing concentration occurs when the
around$=0.05 overcomes the value of 2, which is the frac-computation ofl; is performed in real space, that is, directly
tal dimension of percolation clusters below the percolationffom the relation between the mass and radius of gyration of
threshold of¢,=0.312. This suggests different universality an aggregatev ~R% as in our calculations. However, if the
classes for both processes. evaluation ofd; is made inq space, like from the higl

The fact that the exponents increase with concentration decay of the structure facto®(q)~q %, an opposite trend
is a consequence that the aggregating particles and clustesg decreasing fractal dimension with increasing concentra-
travel shorter distances to meet and eventually stick to eaclion has been reportg@4,34,35. Notwithstanding that this
other as the concentration is increased. Therefore the systemsult in the literature needs to be validated and explained,
should take less time to aggregate and hence the mean cluge believe that therue fractal dimension is the one that
ter sizes should increase faster at higher concentrations. Fgg|ates the mass and radius of the aggregate when both quan-
this same reason for the RLCA case the factor that multipliesities are obtained in real space.
the time in the exponential increase should increase with
concentration.

A word of caution ngeds to be said before trying to apply ACKNOWLEDGMENTS
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tice occupied by colloidal particles. In a real system, the9502985 for international travel and from the Institute for
volume fraction is defined as the volume occupied by theComputational Sciences and Informatics for providing sup-
colloidal particles divided by the total volume of the system.port to M.L. and for the extensive CPU use of the cluster of
It is not evident how to relate one volume fraction to theworkstations. A.E.G. acknowledges support from
other. The belief is that they are proportional to each otherCONACYT Grant Nos. 4906-E and E120.1381.
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