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We have performed extensive numerical simulations of diffusion-limited~DLCA! and reaction-limited
~RLCA! colloid aggregation to obtain the dependence on concentration of several structural and dynamical
quantities, among them the fractal dimension of the clusters before gelation, the average cluster sizes, and the
scaling of the cluster size distribution function. A range in volume fractionf spanning two and a half decades
was used for this study. For DLCA, a square root type of increase of the fractal dimension with concentration
from its zero-concentration value was found:df5d f

01afb, with d f
051.8060.01,a50.9160.03, andb50.51

60.02. For RLCA the same type of behavior was found, this time withd f
052.1060.01,a50.4760.03, and

b50.6660.08. In the case of DLCA, the exponentz that defines the power law increase of the weight-average
cluster size (Sw) with time also increases as a square root type with concentration:z5z01bfa, with
z051.0760.06,b53.0960.22, anda50.5560.03, while the exponentz8 that describes the power law in-

crease of the number-average cluster size (Sn) with time follows the same law:z85z801b8fa8, now with
z8051.0560.04,b853.4160.24, anda850.4660.02. We have also found that the cluster size distribution
function scales asNs(t)'N0Sw

22f (s/Sw), whereN0 is the number of initial colloidal particles andf is a
concentration-dependent function displaying an asymmetric bell shape in the limit of zero concentration. For
RLCA, we found an exponential increase of the average cluster sizes for a substantial range of the aggregation
time:Sw;epft andSn;eqft, with p'2q. For longer times the behavior departs from the exponential increase
and, in the case ofSw for low concentration, it crosses over to a power law increase. In the RLCA case the
scaling is as in DLCA where now a power law decay of the functionf defines the exponentt, f (x);x2tg(x),
with g(x) decaying exponentially fast forx.1. A slight dependence of the exponentt on concentration was
computed around to the valuet51.5. @S1063-651X~96!10311-1#

PACS number~s!: 64.60.Qb, 02.70.2c, 05.40.1j, 81.10.Dn

I. INTRODUCTION

Significant advances in the understanding of irreversible
kinetic colloid aggregation have been made in the past de-
cade @1,2#. For a wide range of experimental systems the
bonds formed between the colliding particles are very strong,
inhibiting the rearrangement of the particles within the clus-
ters. This mechanism produces opened clusters that exhibit
fractal structure@3#. That is, the exponentdf that relates the
total massM of the aggregate to its typical size is not an
integer:M;Rdf . This peculiar discovery of the scale invari-
ance of the clusters@4–8# promoted great interest and work
in the study of these systems.

Two limiting regimes of the aggregation processes were
subsequently identified@9–12#. There is a rapid regime
which is diffusion limited@diffusion-limited colloid aggrega-
tion ~DLCA!#, characterized bydf'1.8, for which the col-
liding particles stick at first contact. If the aggregation is
much slower, due to a very small sticking probability, the
system reaches a different and opposed regime which is re-
action limited@reaction-limited colloid aggregation~RLCA!#
leading to more compact clusters (df'2.1). This result can
be rationalized by noting that the colliding clusters interpen-
etrate more if the sticking probability is close to zero. In
addition, researchers found that aggregating systems possess
not only spatial scaling but also dynamic scaling behavior
@13–17#. For DLCA, the two already known dynamic results

are as follows.~i! There is a power law growth of the aver-
age cluster sizes~Sn andSw! defined by the exponentz: Sn ,
Sw;tz. It was experimentally found that z was approxi-
mately one.~ii ! The cluster size distribution function shows
the scaling behaviorNs(t)'N0S(t)

22f [s/S(t)], whereS(t)
is equal to the number-average or weight-average cluster size
and f is a universal function, bell shaped when plotted as
function of s on a log-log scale. On the other hand, in the
limit of RLCA researchers found~i! an exponential increase
of the mean cluster sizes with time such thatSw(t);Sn

2(t)
and ~ii ! a scaling similar to that for DLCA in whichS(t) is
the weight-average cluster size. The functionf in this case is
a universal function with power law decayf (x);x2tg(x),
whereg(x) decays exponentially fast forx.1 andt51.5.
All these facts have been confirmed extensively, both experi-
mentally @10–12,15,16,18–26# and with computer simula-
tions @2,5,6,27–30#. It is important to emphasize that the
above results, mainly the experimental ones, have been ob-
tained for a low volume fraction regime and researchers
sometimes extrapolate them thinking that they apply to high
concentrations as well. Thinking it over, one cannot escape
the conclusion of a concentration dependence of the previ-
ously described quantities. Take, for example, the fractal di-
mension. In a very concentrated regime the small clusters are
already interpenetrated before sticking and when they stick,
they do so not at the tips of their longer arms but also in the
middle. Therefore the compactness of the clusters should in-
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crease with concentration and hence the fractal dimension
should increase. Concentration changes become important in
the laboratory and in industrial applications.

Two attempts to calculate this dependence in the DLCA
limit have been reported recently for a two-dimensional sys-
tem of hard disks@31# and for a two-dimensional square
lattice @32#. van Garderenet al. @31# compute numerically a
short range fractal dimension of two-dimensional blobs com-
posing a single final aggregate. This fractal dimension is ob-
tained from the decay of the scattering functionS(q), for aq
range corresponding to distances of four disk diameters up to
a concentration-dependent coherence lengthj. Their reported
value ofdf;1.45 is independent of concentration. However,
the same authors also report a long range fractal dimension
that changes smoothly between 1.45 and 2, for the remaining
range beyond the coherence length and up to the size of the
aggregate. In this case they obtain a concentration-dependent
fractal dimension that tends to 2 for high concentrations,
when there are manyterminal blobs@33,34# in the reaction
box. This is indeed to be expected because the system looks
homogeneous at long lengths. To obtain a long range fractal
dimension smaller than 2 for intermediate concentrations is
an artifact. As calculated, this fractal dimension is just a
crossover value that would tend to 2 if the authors had used
a much larger computational box, capable of containing
many more terminal blobs@33,34#. Pencea and Dumitrascu
@32# obtained a concentration-dependent fractal dimension
for the aggregating clusters before gelation that changed its
value from 1.5 to 1.9, for concentrations between 0.1 and
0.5. However, no discussion on the statistics of their calcu-
lations was published, making it difficult to assess the sig-
nificance of their results.

The calculations of van Garderenet al. and Pencea and
Pumitrascu are different because different fractal dimensions
were calculated. In addition, the diffusivity of the growing
clusters is correctly addressed only in the calculation of Pen-
cea and Dumitrascu. In this regard one should note that by
moving all the clusters simultaneously the same step length
as in Ref.@31#, the same diffusivity is assigned to a monomer
as to a very big cluster. Although this mistake may not affect
structural quantities such as the fractal dimension, it would
certainly make a difference in the evaluation of dynamic
quantities such as the cluster size distribution function.

The only published work in three dimensions known to
the authors, addressing a concentration dependence of fractal
dimensionalities, is that of Hasmy and Jullien@35#. In this
work, as in Ref.@31#, the short range fractal dimension of
small blobs in a gelling network is calculated from the decay
of the pair correlation function:g(r ,t);r df23, for 3,r,j.
These authors find an increase of this short range fractal
dimension with concentration. This is in opposition to the
two-dimensional work of van Garderenet al. @31#.

In this work we present results from extensive numerical
simulations for the concentration dependence of several
structural and dynamical quantities obtained for three-
dimensional aggregation processes in the flocculation re-
gime. The algorithms used have already been applied with
success to demonstrate dynamic scaling in computer simula-
tions of these systems@29,30#, as well as to predict the scal-
ing of the structure factor@33,34#. These algorithms allow us
to obtain the fractal characteristics of individual clusters ex-

tracted from the reaction bath where the aggregation is tak-
ing place,beforegelation occurs. Experimentally such a situ-
ation can be achieved by diluting repeatedly the bath where
the reaction takes place@12,26#. Our computational approach
is related to that of Ref.@32# and superior to that of Ref.@31#
for the calculation of dynamical quantities because the cor-
rect diffusivity is given to clusters of different masses at
changing concentration. This work is a calculation in three
dimensions of the concentration dependence ofboth struc-
tural and dynamic quantities in the DLCA and RLCA limits.
We emphasize that the fractal dimension calculated in this
work refers to that ofindividual clusters in the flocculation
regime, i.e., before gelation. It may not necessarily coincide
with that of Ref.@35# associated to the blobs embedded in an
infinite gel.

The organization of this article is as follows. Section II
describes the algorithm used to perform the simulations and
the methodology used to obtain the structural and dynamical
quantities. Sections III–V present the concentration depen-
dence of these properties in both limits, DLCA and RLCA.
Section III describes the calculation of the fractal dimension
of the growing clusters before gelation. Section IV pertains
to the exponentsz and z8 that characterize the power law
time behavior ofSw andSn . This section addresses also the
exponential growth observed during the early stages of the
aggregation time. Section V describes the scaling that results
from the dynamical behavior of the growing clusters. Section
VI summarizes the results with final remarks about their va-
lidity.

II. THE MODEL AND THE METHOD

In this work we use a cubic lattice model where the lattice
cells may be occupied by colloidal particles. Although con-
tinuum models can be developed@36#, the algorithm used
here has the convenience of its execution speed, particularly
when using a large number of particles. Initially all the col-
loidal particles are randomly distributed and unaggregated
although some of them may touch each other at some points.
At a given intermediate time we have a collection of clusters
made of nearest-neighbor occupied lattice cells that are dif-
fusing randomly. One of these clusters is picked at random
and moved by one lattice unit in a random direction if a
random numberX uniformly distributed in the range
0,X,1 satisfies the conditionX,D(s)/Dmax, where
D(s);s21/df is the diffusion coefficient for the selected
cluster of sizes andDmax is the maximum diffusion coeffi-
cient for any cluster in the system. Otherwise the cluster is
not moved. In the previous expressiondf is the fractal di-
mension of the clusters. Once a cluster is selected the time is
increased by 1/(NcDmax!, whereNc is the number of clusters
in the system at that time independently of whether the clus-
ter is actually moved or not. An encounter is defined by an
attempt of one moving cluster to overlap the lattice cells
occupied by another. In this case the move is not allowed
and the moving cluster either sticks~and is merged! to the
other with probabilityP0 or remains side by side to the other
with probability 12P0 . The values used forP0 were one for
the DLCA case and 0.0005 for RLCA. This last value is
small enough to successfully show dynamic scaling in
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RLCA @30#. The simulation is terminated just before the ge-
lation point.

During the simulations we recorded for selected physical
times the following dynamical quantities:~1! the total num-
ber of clusters, from which we were able to obtain the
number-average cluster size;~2! the weight-average cluster
size; ~3! the cluster size distribution; and~4! the radius of
gyration versus the number of monomers for every~all of
the! clusters formed during the simulation.

Various strategies were employed to deal with the con-
centration dependence of the fractal dimension to account for
the diffusivity of the clustersD(s);s21/df . A set of 20 cal-
culations of the fractal dimension for every concentration
studied was performed, using the accepted valuedf51.8 for
DLCA ~2.1 for RLCA! to measure the cluster diffusivity.
The best analytical fit to a calculated concentration-
dependent fractal dimension was obtained. From this fit we
extractedfirst ordervalues of the fractal dimensiondf~f! at
each concentration and input them to account for the changes
in cluster diffusivity. A set of 40 simulations~up to 100 for
large concentrations! was performed—called the output
simulations—and these are the results reported in this paper.

In addition, for some concentrations we performed a self-
consistent calculation of the fractal dimension. An initialdf
was used to calculateD(s). At the end of the first simulation
a newdf was calculated, which was then input as an initial
value to calculateD(s) in a second simulation. The process
was repeated up to 40 iterations per concentration. This
method does not converge to a value ofdf more accurate
than what we report in this paper. In all cases the self-
consistent values were within the standard deviation of the
sample of simulations reported in this paper.

The following 14 volume fractions were considered in
DLCA: 0.001, 0.003, 0.0055, 0.01, 0.03, 0.072, 0.1, 0.139,
0.2, 0.24, 0.3, 0.4, 0.469, and 0.5. In the RLCA case a total
of 15 were used: 0.003, 0.0055, 0.01, 0.03, 0.06, 0.072, 0.1,
0.139, 0.170, 0.2, 0.24, 0.3, 0.4, 0.469, and 0.5. In DLCA for
each concentration up to 0.01 a total of 40 output simulations
were performed whereas for each concentration above 0.01 a
total of 100 output simulations were carried out. In the
RLCA case for each concentration up to 0.01 a total of 20
output simulations were performed and for the other concen-
trations a total of 40 output simulations per concentration
were carried out except forf50.469 and 0.5 where 80 and
100 output simulations were performed, respectively. Each
simulation in both DLCA and RLCA contains on the order
of 30 000 initial monomers. This number of particles is large
enough to allow for a meaningful statistical analysis.

We should note that these calculations are extremely com-
puter intensive. DLCA calculations are 450 times faster than
RLCA. For example, one simulation at a concentration of
fa50.17 requires a CPU timetCPUa512 sec for DLCA and
90 min for RLCA in a dedicated MIPS R4400 200 MHz
IP22 processor. The computation time for another simulation
at a different concentrationf scales up totCPUafa /f. All
together, the results reported in this paper constitute an ac-
complished challenging computer effort.

III. THE FRACTAL DIMENSION

A. DLCA

For each of the 40~100 upon the case! output simulations
of each concentration the value of the fractal dimension was

obtained from the log-log plots of the radius of gyration
versus size of all the clusters formed during the whole ag-
gregation time. Very small clusters were neglected in this
analysis such as to cover only the asymptotic regime of large
clusters~greater than 50 monomers!. Subsequently, we aver-
aged the 40~100 upon the case! values of the fractal dimen-
sion for each concentration and plotted these averages versus
the concentration~volume fraction! f. In Fig. 1~a! the points
correspond to the 14 averages and the vertical bars show
twice the standard deviation~96% confidence!.

Nothing prevents our algorithm from being used for high
concentrations nearf51. However, we choose to work be-
low and a little above the percolation thresholdfc50.312
@37# for our simple cubic lattice model to ensure that the
initial clusters of cubic monomers are separated. Therefore
our results are valid for small and intermediate concentra-
tionsf<0.5. Higher concentrations off→1 are outside the
scope of this work.

Within the valid range of concentrations, the best func-
tional fit yielded a square root type of increase of the fractal
dimension from its zero concentration value. Namely,
df5d f

01afb, whered f
051.79760.011, a50.91360.025,

b50.50760.022. Errors correspond to twice the standard
deviation of the nonlinear fit. It is important to emphasize
that 1.797, the intersect atf50, is the accepted value of the
DLCA fractal dimensiondf'1.8 in the dilute limit.

B. RLCA

A procedure similar to that in DLCA was followed to
obtain the fractal dimension in RLCA. Only concentrations

FIG. 1. The fractal dimension as a function of volume fraction.
~a! DLCA case: for each of the concentrations studied, averages are
over 40 simulations forf<0.1 and over 80 simulations forf.0.1.
~b! RLCA case: averages are over 20 simulations forf<0.1 and
over 40 simulations forf.0.1. Solid lines correspond to the fit
df5d f

01afb. Error bars represent twice the standard deviation.
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below or close to the percolation threshold were considered
and small clusters were neglected when calculating the frac-
tal dimension. Figure 1~b! shows the fractal dimension as a
function of concentration where each of the 15 points corre-
sponds to the average over the output simulations. As in the
DLCA case we find that, within the valid range of concen-
trations, the best functional fit yields a square root type of
increase of the fractal dimension:df5d f

01afb, where
d f
052.09860.010,a50.46960.025, andb50.66160.080.

Once again, the value ofd f
0 is very close to the RLCA ac-

cepted fractal dimension in the dilute limit~'2.1!.
Although the same square root behavior as in the DLCA

case was observed for RLCA, the error on the best estimated
parameters is larger. This is expected because during the
RLCA aggregation the morphology of the growing clusters
is richer than in DLCA.

IV. TIME BEHAVIOR OF THE AVERAGE CLUSTER SIZE

A. DLCA and the exponentsz and z8
The time behavior of both the average cluster sizeSn and

of the weighted averageSw is seen to be exponential at the
early stages of the growth process. In DLCA in less than
one-thousandth of the total aggregation time the system
crossed over to a power law growth defined by the exponent
z for Sw andz8 for Sn :

Sw~ t !;tz, Sn~ t !;tz8. ~1!

The methodology to obtain the exponentsz andz8 is sum-
marized elsewhere@30,36#. We located the time interval
within which there is a linear behavior in the log-log plots of
Sw and Sn versus time. Within this time interval we fit a
straight line to obtain the above defined exponents. The time
region in which the fit is performed is bounded from below
by the crossover from the exponential behavior and from
above by noise due to finite size effects. As the concentration
increases, this time region decreases and eventually disap-
pears, marking a concentration threshold above which it is
not possible to find these exponents, at least for our finite
lattice simulations.

In Fig. 2~a! we show the averages of the exponentsz and
z8 over the output simulations plotted as a function of con-
centration. For concentrations larger thanf50.24 forSw and
larger thanf50.072 forSn , it was not possible to find a
straight line regime in the log-log plots. Figure 2~a! reflects
this fact.

The best functional fit gives a square root type of depen-
dence of these exponents with concentration. We fitted the
exponentz to the functionz5z01bfa and the exponentz8
to the function z85z801b8fa8, obtaining z051.067
60.056, b53.08860.216, a50.54760.034, z8051.045
60.039,b853.41360.245, anda850.46560.020. It is im-
portant to note that the calculated values forz0 andz80 are
quite close to unity, which is the accepted value in the dilute
limit.

B. RLCA and the exponential growth

As already mentioned, the plots ofSw versus time present
a crossover from an exponential increase to a power law
behavior at a sufficiently long time. However, in RLCA we

found that the exponential behavior is clearly observed for a
much longer fraction of the whole aggregation time and that
the region of validity of the power law is noticeable only at
low concentrations and at times three decades longer than in
DLCA. For the average cluster sizeSn , it was not possible to
obtain the exponentz8 even at low concentrations, due to the
absence of a straight line regime in the log-log plots.

Figure 2~b! shows the averages over 20 output simula-
tions of thez exponent as a function of concentration only
for those concentrations where we could obtain it~f50.003,
0.0055, 0.01, and 0.03!. The best functional fit~continuous
curve! givesz5z01bfa, wherez052.81160.001,b586.76
60.42, anda51.516. Although there are just four points
and we cannot be conclusive, the concentration dependence
of the exponentz at low concentrations in RLCA seems to be
very different than in DLCA, showing a steeper increase.

The exponential increase of the mean cluster sizes for a
respectable portion of the total aggregation time was particu-
larly noticeable for the high concentration simulations. In
Fig. 3 the lnSw is plotted as a function of time for the output
simulations at three concentrations:~a! f50.003, ~b!
f50.072, and~c! f50.3. The time range shown in the fig-
ures covers the total aggregation time before the gelation
point. Results forSn are quite similar to those forSw illus-
trated in Fig. 3. From graphs of lnSn and lnSw as a function
of time we calculated the constant that multiplies the time in

FIG. 2. The exponentsz andz8 vs volume actionf for concen-
trations where it is possible to define a region of linear behavior in
the log-log plots ofSw andSn vs time.~a! DLCA case: averages are
over 40 simulations.~b! RLCA case: averages are over 20 simula-
tions. The solid and dotted lines depict the functional fit

z5z01bfa andz85z801b8fa8, respectively.
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the exponential growth~the slopem for Sw andm8 for Sn of
the straight lines! and plot them versus concentration. Figure
4 shows the concentration dependence ofm andm8. These
plots reveal a clear linear dependence, i.e.,m5pf and
m85qf. The values obtained forp andq werep50.001 019
60.000 024 andq50.000 50860.000 008. The fact that
p'2q indicates thatSw;Sn

2 at least for a good initial part of
the aggregation time. In conclusion, these results can be con-
cisely written as follows:

Sw;epft, Sn;eqft, ~2!

with p'2q.

V. THE SCALING

A. DLCA

We tested several scaling equations for the cluster size
distribution function. Our first attempt was the scaling pro-
posed in Ref.@38#: Ns(t)'N0s

22f (s/Sw). Using this for-
mula it was not possible to collapse the data for different
times during the aggregation into one single master curve.
The second attempt was the formula given in Refs.@12,26#:
Ns(t)'N0Sn

22f (s/Sn). In this case we were able to collapse
the data only for the simulations at low concentration. Fi-
nally we tried the formNs(t)'N0Sw

22f (s/Sw), for which we
were able to fully collapse the data for all concentrations.
The exponent ofSw that best correlated the data was about
22.

The fact that the formula in Refs.@12,26# gave scaling at
low concentrations is apparently related to the behavior of

the exponentsz andz8. At low concentrationsz5z851 and
Sn is proportional toSw . However, at finite concentrations
zÞz8 and the cluster size averages are not proportional.
Hence, if scaling works with one of them, it cannot work
with the other.

It is important to mention that the shape of the scaling
function is concentration dependent. For low concentrations
the shape is asymmetrically bell shaped as in Refs.@12,26#.
However, with increasing concentration the left branch of the
curve tends to rise, becomes flat forf'0.03, and has a nega-
tive slope for higher concentrations. Figures 5 shows the
master curves for three concentrations:~a! f50.001, ~b!
f50.03, and~c! f50.139, where data from all the output
simulations were considered.

B. RLCA

To scale the data for the cluster size distribution function,
we corroborated @12,26,30# that the form Ns(t)
'N0Sw

22(t) f „s/Sw(t)… that we found valid for the DLCA
case is also valid here. However, the functionf (x) is no
longer bell shaped and has a power law decay defined by the
exponentt: f (x);x2tg(x). Hereg(x) is a cutoff function
decaying exponentially fast forx.1. As in the DLCA case
to fully collapse the data we needed to exponentiateSw to a
power of approximately22. A slight dependence of the ex-
ponentt on concentration was found ranging from 1.37 for
low concentrations up to 1.62 for very high concentrations.
This can be a real effect or can be an artifact of the compu-
tational algorithm which takes into account most of the
mechanisms experienced by the real aggregating particles
but not all of them. That the dependence on concentration is
very slight together with the available experimental data and
theoretical results~which propound a constantt value of 1.5
@11,12,15,21,23,26,39#! may indicate the second possibility
to be more likely. A possible explanation may be the fact
that, in the simulation, data for large clusters are scarce~left
of the master curves! due to the finite size of the computa-
tional cell whereas the experimental data refer to infinite
@12,26# material. Figures 6~a! and 6~b! illustrate
ln[Sw

2.1(t)Ns(t)/N0] versus ln[s/Sw(t)] for f50.003 and
0.072, respectively. In Fig. 6~c!, for f50.3, it was necessary
to exponentiateSw to the power 2.2 to obtain the best col-
lapse of the data. As in DLCA, figures display data for the
numbers of clusters coming from all the output simulations
for each concentration.

FIG. 3. RLCA case. The lnSw(t) vs time behavior during the
whole aggregation process before gelation for 20 simulations at
each concentration:~a! f50.003,~b! f50.072, and over 40 simu-
lations for ~c! f50.3. Time is in reduced units.

FIG. 4. RLCA case. Concentration dependence of the slopesm
andm8 of the straight lines in the plots of lnSw and lnSn vs time.
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VI. SUMMARY AND CONCLUSIONS

We have seen a real effect in the concentration depen-
dence of the structural and dynamical quantities in colloid
aggregation manifested by an increase of these quantities
when increasing the concentration. In particular, the fractal
dimension of the clusters increases at higher concentrations.
As shown in this work, in DLCA the fractal dimension at
aroundf50.05 overcomes the value of 2, which is the frac-
tal dimension of percolation clusters below the percolation
threshold offc50.312. This suggests different universality
classes for both processes.

The fact that thez exponents increase with concentration
is a consequence that the aggregating particles and clusters
travel shorter distances to meet and eventually stick to each
other as the concentration is increased. Therefore the system
should take less time to aggregate and hence the mean clus-
ter sizes should increase faster at higher concentrations. For
this same reason for the RLCA case the factor that multiplies
the time in the exponential increase should increase with
concentration.

A word of caution needs to be said before trying to apply
these results to experimental systems. In our algorithm, the
volume fraction is defined as the fraction of cells of the lat-
tice occupied by colloidal particles. In a real system, the
volume fraction is defined as the volume occupied by the
colloidal particles divided by the total volume of the system.
It is not evident how to relate one volume fraction to the
other. The belief is that they are proportional to each other.

This would fully validate the results in this work and only
minor changes in the constants that multiply the volume frac-
tions in the above formulas would need to be introduced in
order to compare with experiments.

We finally need to mention that the increase in the fractal
dimension with increasing concentration occurs when the
computation ofdf is performed in real space, that is, directly
from the relation between the mass and radius of gyration of
an aggregate:M;Rdf as in our calculations. However, if the
evaluation ofdf is made inq space, like from the high-q
decay of the structure factor:S(q);q2df , an opposite trend
of decreasing fractal dimension with increasing concentra-
tion has been reported@24,34,35#. Notwithstanding that this
result in the literature needs to be validated and explained,
we believe that thetrue fractal dimension is the one that
relates the mass and radius of the aggregate when both quan-
tities are obtained in real space.

ACKNOWLEDGMENTS

E.B.B. acknowledges support from NSF Grant No. INT-
9502985 for international travel and from the Institute for
Computational Sciences and Informatics for providing sup-
port to M.L. and for the extensive CPU use of the cluster of
workstations. A.E.G. acknowledges support from
CONACYT Grant Nos. 4906-E and E120.1381.

FIG. 5. DLCA case of ln[Sw
2.1(t)Ns(t)/N0] vs ln[s/Sw(t)] for

~a! f50.001,~b! f50.03, and~c! f50.139. The cluster numbers
functionNs(t) contains data from 40 simulations atf50.001, 0.03,
and from 80 simulations atf50.139.Sw(t) is the average over
those simulations. Sizes are in reduced units.

FIG. 6. RLCA case of ln[Sw
2.1(t)Ns(t)/N0] vs ln[s/Sw(t)]. The

cluster number functionNs(t) contains data from 20 simulations at
each concentration~a! f50.003,~b! f50.072, and from 40 simu-
lations at~c! f50.3. Sw(t) is the average over those simulations.
Forf50.3 it was necessary to exponentiateSw to the power 2.2 to
obtain the best possible collapse. Sizes are in reduced units.
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